Preface

THIS VOLUME comprises the proceedings of the Second Annual Symposium on the Physics of Failure in Electronics. The symposium was sponsored again by the Rome Air Development Center and the IIT Research Institute (form erly Armour Research Foundation of Illinois Institute of Technology), and convened in Chicago on 25 and 26 September 1963. Approximately 500 persons attended.

The purpose of the meeting was to provide a forum wherein reliability and component engineers on the one hand, and applied researchers on the other hand could exchange views and be made aware of each other's problems and approaches to their solution. In particular, the symposium addressed itself to the improved reliability of electronic devices: the identification and isolation of mechanisms by which device performance changes with time and environment the elimination or minimization of these effects, and the prediction of long time device performance based upon the application of this type of knowledge. Thus it was intended that the symposium would be specifically oriented to neither the practitioner nor the fundamentalist. Rather, it was planned that the subject matter of this symposium would be generally of interest to the workers in all of these diverse disciplines, who are collectively charged with the responsibility of developing highly reliable electronic devices and demonstrating their reliability.

The two-day meeting consisted of four sessions, covering broadly the following subject areas: prediction techniques, device substructures, experimental techniques, and devices. Papers are grouped in this order within the proceedings.

Making known to each discipline the problems and approaches to their solution of the workers in other disciplines is not a simple task. It cannot be said that this communication difficulty has yet been fully resolved — even now the views of each may seem in part nonrealistic to the other. On the other hand, the shift in emphasis in the papers that were presented at the two symposia is noteworthy. Last year's presentations were more concerned with a general expression of the over-all problem and a groping for their solution. This year, there are a larger number of papers which report the results of activities that have actually come to grips with specific problems. It appears, then, that progress has been made in effecting mutual understanding and in implementing the physics-of-failure approach.

While the increased attendance over last year's meeting is worth noting, the

effectiveness of the symposium cannot be judged on numbers alone. Indeed, only the reaction of the entire professional community is meaningful. For this reason, the editors invite comments and criticisms of the meeting itself and of the published proceedings.

The symposium co-chairmen were:

MORTON E. GOLDBERG IIT Research Institute

JOSEPH VACCARO Rome Air Development Center

Session moderators were:

DAVID F. BARBER Rome Air Development Center

FLOYD E. WENGER Air Force Systems Command

STANLEY POLLOCK U.S. Naval Ordnance Laboratory

JOHN GRUOL U.S. Army Research and Development Laboratory

A welcoming address was presented by Mr. V. H. Disney, Vice-President, IIT Research Institute, and introductory remarks were given by Major General Daniel C. Doubleday, Commander, Rome Air Development Center, at the opening session. A luncheon address was delivered by Mr. Ernest C. Wood, Deputy Director, Office of Communications and Electronics, Department of Defense Research and Engineering.

MORTON E. GOLDBERG

JOSEPH VACCARO

Table of Contents

Contents

SECTION I - PREDICTION TECHNIQUES

Derivation of Delbruck's Model for Random Failure (for Semiconductor Materials) : Its Identification with the Arrhenius Model ; and Its Experimental Verification . . . Dr. A. V. Pershing G. E. Hollingsworth

Comprehensive Failure Mechanism Theory — Metal Film Resistor Behavior M. Goldberg A. Horberg R. Stewart D. Levinson

SECTION II – DEVICE SUBSTRUCTURES

Diffusion Studies on S	Stres	ssed	Т	ant	alu	ım-Ta	ntal	um				
Oxide Capacitors				•	•		•					103
4 						Neva	. Joh	nson	L			
						Kenn	eth	Gree	enou	gh		

vi

vii

Page

25

61

Fable of Contents	(Cont)
--------------------------	--------

°۳;

Page

Some Failure Mechanisms at Insulator-Conductor Junctions . . 154 G. A. Shirn D. M. Smyth

SECTION III - EXPERIMENTAL TECHNIQUES

On the Extrapolation of Accelerated Stress Conditions to Normal Stress Conditions of Germanium Transistors . . . 208 Jayne Partridge

Application of the Electron Microprobe Analyzer to the

Contents

Table of Contents (Cont)

	Contents		Page
	Burst Noise in Semiconductor Devic	es	268
	SECTION IV - DEVICES		
	Localized Thermal Effects in Silicon	Power Transistors R. M. Scarlett W. Schroen	285
	Failure Mechanisms in Semiconducto	ors	304
	On the Degradation of Gallium Arse	enide Tunnel Diodes R. L. Anderson	328
ø.	The Aging Mechanisms of Metal Fi	lm Resistors John J. Bohrer Charles W. Lewis	338
	Failure Mechanisms in Traveling-W	Vave Tubes	349
	SECTION V - PAPERS NOT PRE	SENTED AT SYMPOSIU	J M
	Thermodynamics of Failure and Ag	ng	361
	Application of Flowgraph Technique Reliability Problems	es to the Solution of W. W. Happ	. 375
	Identification and Elimination of A Semiconductor Devices	Failure Mechanism in Dr. T. A. Longo Dr. B. Selikson	. 424

ix

Table of Contents (Cont)

Contents

Page

Reliability of Gaseous Optical Masers Using Noble Gas Active Media Dr. Jack E. Taylor		•	436
Silicon Surface Passivation: Materials and Micro Properties J. W. Dzimianski E. R. Pemsel W. J. Lytle S. M. Skinner	•	•	450
Missile Failure Due to Impurities in Electroplates Paul Mahler	•	•	467
Stacking Faults and Failure of Silicon Devices	•	•	476

Failure Modes and Mechanisms in Solid Tantalum Capacitors . . 483 E. J. Fresia J. M. Eckfeldt

Failure Modes in Integrated	an	d P	ar	tiall	ly I	nte	gra	ted				
Microelectronic Circuits					•					•		498
				G.	P.	An	ıdeı	rsor	ı			
				R.	A.	Er	icks	son				

Observations of the Physics of Failure of	
Semiconductor Devices by X-ray Radiography	525
Ray L. Silver	

Important Mechanism Contributing to Tunnel Diode Failure . . 550 R. P. Nanavati

SECTION I

PREDICTION TECHNIQUES