

30th annual proceedings

reliability physics 1992

San Diego, California • March 31, April 1, 2, 1992

Sponsored by the IEEE Electron Devices Society and the IEEE Reliability Society

IEEE Catalog No. 92CH3084-1

1992 INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM

SYMPOSIUM OFFICERS

GENERAL CHAIR	H. A. Schafft, NIST
VICE GENERAL CHAIR	
SECRETARY	
FINANCE	S. K. Groothuis, Texas Instruments

SYMPOSIUM COMMITTEE CHAIRS

TECHNICAL PROGRAM	R. C. Blish, II, Intel
PUBLICITY	A. G. Rawers, Integrated Informationl
REGISTRATION	J. G. Cottle, University South Florida
ARRANGEMENTS	A. K. Goel, Elite Microelectronics
AUDIO-VISUAL	W. K. Gladden, Advance Micro Devices
PUBLICATIONS	D. J. LaCombe, General Electric
EQUIPMENT DEMONSTRATIONS	J. W. McPherson, Texas Instruments
TUTORIAL A. N	. Campbell, Sandia National Laboratories
WORKSHOPS	G. Riga, Riga Analytical Lab
CONSULTANT	
CONSULTANT	D. F. Barber, Scien-Tech Associates

BOARD OF DIRECTORS

D. A. Baglee *Intel*

H. A. Schafft NIST

L. A. Kasprzak *IBM*

P. E. Kennedy Management Sciences

N. McAfee Westinghouse Electric Co. W. H. Schroen Texas Instruments

R. W. Thomas Rome Laboratory

M. H. Woods Intel

Published by the

ELECTRON DEVICE SOCIETY AND RELIABILITY SOCIETY

of the

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limits of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 21 Congress Street, Salem, MA 01970. Instructors are permitted to photocopy isolated articles for noncommercial classroom use without fee. For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331. All rights reserved. Copyright © 1992 by the Institute of Electrical and Electronics Engineers, Inc.

IEEE Catalog No.	92CH3084-1	
Library of Congress No.	82-640313	Serial
ISBN:	0-7803-0473-x	Softbound
	0-7803-0474-8	Casebound
	0-7803-0475-6	Microfiche

IN REMEMBRANCE

Dr. Harold E. Nigh 1932 – 1991 General Chairman of IRPS – 1975 IRPS Board of Directors – 1976, 1979–1983

This memorial is to commemorate the contributions of Dr. Nigh to both our industry and IRPS management. He served in many capacities within IRPS including Technical Program Chairman, General Chairman in 1975, and, being the immediate Past General Chairman, as Chairman of the Board of Directors Ex Officio in 1976. He returned to the Board in 1979 as the Electron Devices Representative and remained in that position through the 1983 Symposium.

During his tenure on the Board of Directors of IRPS, Dr. Nigh had the responsibility, jointly with Mr. Alfred L. Tamburrino, for Audits and Personnel Planning. A major accomplishment was the establishment of a methodology for the IRPS management line of succession. To effect implementation of the methodology, he actively participated in the recruitment of management teams. This foundation has manifested itself in the smooth IRPS administrative transitions that exist today.

Dr. Nigh's career focused primarily on the development, manufacturing, and reliability of MOS integrated circuits. His

professional interests and contributions closely tracked the commercial development of MOS technology in the microelectronics industry generally and at AT&T particularly.

In addition to his active participation within IRPS, Dr. Nigh was active in many other endeavors. He served as a Member of the Board of Directors of Lehigh Valley Thresholds, President of the Lehigh Valley Youth Soccer League, and Member of the Board of Directors of the Lehigh Valley Senior Soccer League.

The role model characteristics of Dr. Nigh were apparent to those within the IRPS management, to his co-workers at Bell Telephone Laboratories, and to those he associated with in his community. Dr. Nigh demonstrated strong mentoring of younger people, creative problem solving, compassion for the people with whom he interacted, and strong loyalty to the organizations he supported. His contributions have made a lasting impact on the IRPS, AT&T and his community. Dr. Nigh was born in Parnell, Missouri, in 1932. He graduated from Parnell High School in 1950 after which he served in the U.S. Navy from 1951 until 1955. Upon discharge from the Navy, he attended Northwest Missouri State University where, in 1958, he received a Bachelor of Science degree in Physics and Mathematics. Just five years later, in 1963, he was awarded the degree of Ph.D. in Physics from Iowa State University. Dr. Nigh continued his work at Iowa State as a Post-Doctoral Fellow from 1963 to 1964.

In 1964 Dr. Nigh joined Bell Laboratories in Allentown, Pennsylvania as a Member of Technical Staff. His interests were immediately captured by metal-dielectric-silicon structures and devices such as MOS capacitors and insulated gate field effect transistors (IGFETs). In the late '60's, conventional metal-gate pchannel MOS transistors were fabricated with aluminum and silicon dioxide on n-type silicon wafers. Threshold voltages of -3 to -4 volts were typical. Sodium contamination of silicon dioxide was common and led to unstable electrical characteristics under conditions of positive gate bias and moderate temperature elevation. Dr. Nigh's research soon led to the discovery that layered dielectric structures of aluminum oxide (Al₂0₃) and silicon dioxide (SiO₂) could produce electrically stable p-channel MOS transistors with threshold voltages of -1 volt. This enabled Bell Laboratories to design and Western Electric to manufacture pchannel MOS integrated circuits that operated from the same 5volt power supplies used by conventional bipolar integrated circuits. For this work, Dr. Nigh and his collaborators J. Stach and S.K. Tung received U.S. Patent 3502950.

In 1968, Dr. Nigh was promoted to Supervisor, MOS Development. In both this assignment and other comparable positions with Bell Laboratories, he supervised the development of fabrication processes and conducted reliability evaluations for MOS integrated circuits. The fabrication technologies developed by Dr. Nigh were used in the manufacture of DRAMs, SRAMs digital signal processors and ASIC devices. These interests led to his becoming active in IRPS.

In 1983, Dr Nigh transferred to Western Electric Company and was promoted to MOS Product Engineering Manager at the Allentown Works. In 1985, he became Manager of AT&T Microelectronics' Santa Cruz Plant in California. He returned to Pennsylvania in 1986 as Manager, Lightwave and Compound Materials Development and Manufacturing Engineering at AT&T's Reading Works. In 1987 he was promoted to Director, Engineering and Manufacturing at Allentown. From 1988 until his retirement in 1989, he was General Manager of the Allentown Works.

Dr. Nigh passed away August 8, 1991. He is survived by his wife Christine, their four children and five grandchildren.

TABLE OF CONTENTS

BUILDING IN RELIABILITY AND RECENT NEWS Session Co-Chairs: Clyde Dunn and Pedro Engel

J.R. Sredni	ک
The Evaluation of 16-Mbit Memory Chips with Built-in Reliability	
C.H. Stapper and W.A. Klaasen	×
Development of Design Rules for Reliable Tungsten Plugs Using Simulations	
M.M. IslamRaja, A.J. Bariya, K.C. Saraswat, M.A. Cappelli, J.P. McVittie,	
L. Moberly, and R. Lahri	
Internal Passivation for Suppression of Device Instabilities Induced by Backend Processes	
V. Jain, D. Pramanik, S.R. Nariani, and C. Hu11	
Simulation of CMOS Circuit Degradation Due to Hot-Carrier Effects	
K.N. Quader, P. Fang, J. Yue, P.K. Ko, and C. Hu16	
Wire Bonding of Aluminum/Polyimide Multi-layer Structures	
V. Murali, M. Gasparek, A. Bhansali, S. Chen, and R. Dias	

DIELECTRICS & HOT-CARRIERS I

Session Co-Chairs: Bob Yun and Jose Maiz

The Effect of Surface Roughness of Si ₃ N ₄ Films on TDDB Characteristics of ONO Films		
H. Tanaka, H. Uchida, N. Hirashita, and T. Ajioka	31	
Thin Oxide Damage by Plasma Etching and Ashing Processes		
H. Shin, CC. King, and C. Hu	37	
Charge Trapping/Detrapping and Dielectric Breakdown in SiO ₂ /Si ₃ N ₄ /SiO ₂ Stacked Layers on Rugged Poly-Si under Dynamic Stress		
G.Q. Lo, D.L. Kwong, V.K. Mathews, P.C. Fazan, and A. Ditali	42	- A
Long-term Effects of Sidegating on GaAs MESFETs		Leser 4
H. Cholan, D. Stunkard, and T. Rubalcava	49	
TDDB on Poly-Gate Single Doping Type Capacitors		
SJ. Wang, IC. Chen, and H.L. Tigelaar	54	
Hot-Carrier Induced h _{fe} Degradation in BiCMOS Transistors		
C.J. Varker, D. Pettengill, WT. Shiau, and B. Reuss	58	

DEVICES/PROCESS Session Co-Chairs: Tim E. Turner and Dave Willmott

Substrate Injection Induced Program Disturb - New Deliability Consideration for Flash		
EPROM Arrays		
A. Roy, R. Kazerounian, A. Kablanian, and B. Eitan	68	
Hot-Electron-Induced Input Offset Voltage Degradation in CMOS Differential Amplifiers		
S. Mohamedi, VH. Chan, JT. Park, F. Nouri, B. W. Scharf, and J. E. Chung	76	
Mismatch Drift: A Reliability Issue for Analog MOS Circuits		NB
C. Michael, H. Wang, C.S. Teng, J. Shibley, L. Lewicki, CM. Shyu, and R. Lahri	81	1
Pipeline Defects in CMOS MOSFET Devices Caused by SWAMI Isolation		
C.T. Wang, H. Haddad, P. Berndt, BS. Yeh, and B. Connors	85	ŕ
Thermal Stability of Ferroelectric Memories		
A. Gregory, R. Zucca, S.Q. Wang, M. Brassington, and N. Abt		V.
Low Frequency 1/f Noise and Current Gain Degradation in BiCMOS n-p-n Transistors		
M.L. Dreyer and J. Durec		*
Defect-Free Shallow p-n Junction by Point-Defect Engineering		
S. Onishi, A. Ayukawa, K. Uda, and K. Sakiyama	102	-2.
Bipolar Reliability Optimization through Surface Compensation of Base Profile		
J.D. Burnett, C. Lage, and J.D. Hayden		

HOT-CARRIERS II

Session Co-Chairs: Toshiaki Tsuchiya, Craig Lage, and Douglas H. Loescher

Post-Stress Interface Trap Generation: A New Hot-Carrier-Induced Degradation Phenomeon in Passivated n-Channel MOSFETs	•	
E. de Schrijver, P. Heremans, R. Bellens, G. Groeseneken, and H.E. Maes	112	$\langle \eta \rangle$
An In-Process Monitor for n-Channel MOSFET Hot-Carrier Lifetimes		7
K.R. Mistry, D.B. Krakauer, B.S. Doyle, T.A. Spooner, and D.B. Jackson	116	2
Impact of Inter-Metal-Oxide Deposition Condition on NMOS and PMOS Transistor Hot-		
Carrier Effect		
C. Jiang, C. Hu, C.H. Chen, and P.N. Tseng	122	N.A.

Rapid Degradation of WSi Self-Aligned Gate GaAs MESFET by Hot-Carrier Effect A. Watanabe, K. Fujimoto, M. Oda, T. Nakatsuka, and A. Tamura	127	X	
A Method to Project Hot-Carrier-Induced Punch Through Voltage Reduction for Deep Submicron I DD PMOS EETs at Room and Elevated Temperatures			
P. Fang, J.T. Yue, and D. Wollessen	131	\checkmark	
Role of Hydrogen at Poly-Si/SiO ₂ Interface in Trap Generation by Substrate Hot-Electron Injection		•	34
I. Yoshii, K. Hama, and K. Hashimoto	136	and the second se	
Dynamic Gate Coupling of NMOS for Efficient Output ESD Protection C. Duyyury and C. Diaz.	141	مرما	

PACKAGING

Session Co-Chairs: Jack McCullen and Richard Zalenka

Using FEA to Develop a MIL-HDBK-217 SMT Model	
G.A. Bivens and E.F. Pello	151
Moisture Sensitivity Characterization of Plastic Surface Mount Devices Using Scanning	
Acoustic Microscopy	
R.L. Shook	157
The Impact of Delamination on Stress-Induced and Contamination-Related Failure in Surface Mount ICs	
T.M. Moore and S.J. Kelsall	169
Comparison of Delamination Effects between Temperature Cycling Test and Highly	
Accelerated Stress Test in Plastic Packaged Devices	
R. van Gestel, K. de Zeeuw, L. van Gemert, and E. Bagerman	177
X-ray Analysis of Package Cracking During Reflow Soldering	
M. Harada, S. Tanigawa, S. Ohizumi, and K. Ikemura	182
New Thin Plastic Package Crack Mechanism Induced by Hot IC Die	
M.R. Marks	190
Mercury Porosimetry Investigation of Plastic, Integrated Circuit Packages	
G.C. Perrault and A.W. Thornton	198

METALLIZATION I

Session Co-Chairs: John T. Yue and William Filter

Increase in Electromigration Resistance by Enhancing Backflow Effect X.X. Li, W. Zhang, Y. Ji, Z. Wang, Y.H. Cheng, and G.B. Gao	211
Dislocation-based Mechanisms in Electromigration <i>BR Livesay NF Donlin AK Garrison HM Harris and IL Hubbard</i>	217
Statistical Distribution of 1/f ² Noise in Thin Metal Films under Accelerated Electromigration Test Conditions L.M. Head, B. Le, C.T.M. Chen, and J. Swiatkowski	.228
Finite Element Analysis of a SWEAT Structure with a 3-D, Nonlinear, Coupled Thermal-	
Electric Model	
M.J. Dion	232
Corrosion Susceptibility of Thin-Film Metallizations	
A.J. Griffin, Jr., F.R. Brotzen, J.W. McPherson, and C.F. Dunn	239
A Test Chip for Automatic Reliability Measurements of Interconnect Vias	
K. Lippe, A. Hasper, G.W. Elfrink, J. Niehof, and H.G. Kerkhoff	247

4-A

BUILDING IN RELIABILITY

Session Co-Chairs: Dave Erhart and Pedro Engel

The Bond Shear Test: An Application for the Reduction of Common Causes of Gold Ball		
Bond Process Variation		
M. Shell-DeGuzman and M. Mahaney	251	
Characterization of Dynamic Spatial Conduction Patterns on ESD Protection Circuitry by		1
Photon-Counting Imaging Method		NP
B.C. Yap, J.K. Jeng, and L.L.S. Chang	258	
Reliability Defect Detection and Screen during Processing – Theory and Implementation		
H. H. Huston and C.P. Clarke	268	
Building-In Reliability: Soft Errors – A Case Study		
Z. Hasnain and A. Ditali	276	
Built-In Real-Time Reliability Automation (BIRRA)		
R.H. Jones	281	

FAILURE ANALYSIS & GaAs

Session Co-Chairs: Donald Staab and Alan Street

Rapid Localization of IC Open Conductors Using Charge-Induced Voltage Alteration (CIVA)	<u> </u>
E.I. Cole and R.E. Anderson	5,1

Imaging VLSI Cross-Sections by Atomic Force Microscopy		
G. Neubauer, M.L.A. Dass, and T.J. Johnson	299	
Analysis of Silicide Process Defects by Non-Contact Electron-Beam Charging		
K.A. Jenkins, P.D. Agnello, and T.J. Bucelot		
Acoustic Evaluation of Electronic Plastic Packages		
J. Siettmann, R. Dias, and K. Fiebelkorn		C
Reactive Ion Etching for Failure Analysis Applications		2
M.T. Abramo, E.B. Roy, and S.M. Lecours		
Selective Removal of Dielectrics from Integrated Circuits for Electron Beam Probing		
W. Baerg, V.R.M. Rao, and R. Livengood		
Reliability Study of GaAs MMIC Amplifier		
K.A. Christianson, J.A. Roussos, and W.T. Anderson		
A Case Study of Two-Stage Fault Location		
P. Ryan, K. Davis, and S. Rawat		

METALLIZATION II

Session Co-Chairs: Birendra N. Agarwala and Anthony Oates

Comparison of Electromigration Reliability of Tungsten and Aluminum Vias under DC and		
Time-Varying Current Stressing		
J. Tao, K.K. Young, N.W. Cheung, and C. Hu	338	
A New Mechanism for Degradation of Al-Si-Cu/TiN/Ti Contacted p-n Junction		
T. Yoshida, H. Kawahara, and SI. Ogawa	344	
Three Kinds of Via Electromigration Failure Modes in Multilevel Interconnections		
T. Yamaha, M. Naitou, and T. Hotta	349	
A Novel Via Failure Mechanism in Al-Cu/Ti Double Level Metal System		6
P. Freiberger and K. Wu	356	
Three-Dimensional Simulations of Temperature and Current Density Distribution in a Via Structure		
K. Weide and W. Hasse	361	
Electromigration Lifetime as a Function of Line Length and Step Number		
T. Nogami, S. Oka, K. Naganuma, T. Nakata, C. Maeda, and O. Haida	366	
Influence of Grain Size on Defect-Related Early Failures in VLSI Interconnects		
S.S. Menon, A.K. Gorti, and K.F. Poole	373	

MARK YOUR CALENDAR AND START PLANNING TO ATTEND, AND POSSIBLY CONTRIBUTE A PAPER, TO THE FOLLOWING SYMPOSIA:

1993 INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM MARCH 22, 23, 24, 25, 1993 Hyatt Regency Atlanta, Georgia

1994 INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM April 11, 12, 13, 14, 1994 Fairmont Hotel San Jose, California

1995 INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM April 3, 4, 5, 6, 1995 Riviera Hotel Las Vegas, Nevada

1996 INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM MARCH 25, 26, 27, 28, 1996 Loews Anatole Dallas, Texas

1997 INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (dates to be announced) Denver, Colorado

х